Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 13.730
1.
Environ Geochem Health ; 46(6): 184, 2024 May 02.
Article En | MEDLINE | ID: mdl-38695941

Excessive fluoride can adversely affect bone mineral density (BMD). Oxidative stress and mitochondrial dysfunction are crucial mechanisms of health damage induced by fluoride. Here, a cross-sectional survey involving 907 Chinese farmers (aged 18-60) was carried out in Tongxu County in 2017, aiming to investigate the significance of mitochondrial DNA copy number (mtDNAcn) and oxidative stress in fluoride-related BMD change. Concentrations of urinary fluoride (UF), serum oxidative stress biomarkers, including total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA), as well as relative mtDNAcn in peripheral blood were determined. The multivariable linear model and mediation analysis were performed to assess associations between UF, oxidative stress, and relative mtDNAcn with BMD. Results showed that GSH-Px levels increased by 6.98 U/mL [95% confidence interval (CI) 3.41-10.56)] with each 1.0 mg/L increment of UF. After stratification, the T-AOC, relative mtDNAcn, and BMD decreased by 0.04 mmol/L (-0.08 ~ -0.01), 0.29-unit (-0.55 ~ -0.04), and 0.18-unit (-0.33 ~ -0.03) with every 1.0 mg/L elevation of UF in the excessive fluoride group (EFG, adults with UF > 1.6 mg/L), respectively. Furthermore, T-AOC and relative mtDNAcn were favorably related to the BMD in the EFG (ß = 0.82, 95%CI 0.16-1.48 for T-AOC; ß = 0.11, 95%CI 0.02-0.19 for relative mtDNAcn). Mediation analysis showed that relative mtDNAcn and T-AOC mediated 15.4% and 17.1% of the connection between excessive fluoride and reduced BMD, respectively. Findings suggested that excessive fluoride was related to lower BMD in adults, and the decrement of T-AOC and relative mtDNAcn partially mediate this relationship.


Bone Density , DNA, Mitochondrial , Farmers , Fluorides , Oxidative Stress , Fluorides/toxicity , Humans , Bone Density/drug effects , Adult , Middle Aged , Male , Cross-Sectional Studies , Adolescent , China , Young Adult , Female , DNA Copy Number Variations , Occupational Exposure/adverse effects , Biomarkers/blood
2.
Syst Rev ; 13(1): 123, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720372

BACKGROUND: Thyroid dysfunction is common in older people, with females at higher risk. Evidence suggests that thyroid-stimulating hormone (TSH) levels naturally increase with age. However, as uniform serum TSH reference ranges are applied across the adult lifespan, subclinical hypothyroidism (SCH) diagnosis is more likely in older people, with some individuals also being commenced treatment with levothyroxine (LT4). It is unclear whether LT4 treatment in older people with SCH is associated with adverse cardiovascular or bone health outcomes. METHODS: A systematic review and meta-analysis were performed to synthesise previous studies evaluating cardiovascular and bone health outcomes in older people with SCH, comparing LT4 treatment with no treatment. PubMed, Embase, Cochrane Library, MEDLINE, and Web of Science databases were searched from inception until March 13, 2023, and studies that evaluated cardiovascular and bone health events in people with SCH over 50 years old were selected. RESULTS: Six articles that recruited 3853 participants were found, ranging from 185 to 1642 participants, with the proportion of females ranging from 45 to 80%. The paucity of data resulted in analysis for those aged over 65 years only. Additionally, a study with 12,212 participants aged 18 years and older was identified; however, only data relevant to patients aged 65 years and older were considered for inclusion in the systematic review. Of these 7 studies, 4 assessed cardiovascular outcomes, 1 assessed bone health outcomes, and 2 assessed both. A meta-analysis of cardiovascular outcomes revealed a pooled hazard ratio of 0.89 (95% CI 0.71-1.12), indicating no significant difference in cardiovascular risk between older individuals with SCH treated with LT4 compared to those without treatment. Due to overlapping sub-studies, meta-analysis for bone health outcomes was not possible. CONCLUSIONS: This systematic review and meta-analysis found no significant association between LT4 use and cardiovascular and bone health outcomes in SCH participants over 65 years. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42022308006.


Cardiovascular Diseases , Hypothyroidism , Thyroxine , Humans , Hypothyroidism/drug therapy , Thyroxine/therapeutic use , Aged , Female , Bone Density/drug effects , Male , Middle Aged
3.
Front Immunol ; 15: 1332303, 2024.
Article En | MEDLINE | ID: mdl-38698843

Background: Immune checkpoint inhibitors (ICIs) have left a deep impression in the treatment of non-small cell lung cancer (NSCLC), however, not all patients benefit from it. The purpose of this study was to investigate the prognostic value of baseline bone mineral density (BMD) derived from chest computed tomography (CT) scans in NSCLC patients treated with ICIs. Methods: This study included patients with advanced NSCLC who underwent ICI treatment at the Wuhan Union Hospital from March 2020 to October 2022. Baseline BMD was evaluated at non-contrast chest CT at the level of first lumbar vertebra. Patients were divided into BMD-lower group and BMD-higher group according to the optimal cutoff value calculated by X-tile software. Baseline characteristics of the two groups were compared and variables between the two groups were balanced by propensity score matching (PSM) analysis. We calculated the objective response rate (ORR) and disease control rate (DCR) of the two groups and analyzed overall survival (OS) and progression-free survival (PFS) using BMD and other clinical indexes through Cox regression models and Kaplan-Meier survival curves. Results: A total of 479 patients were included in this study, and all patients were divided into BMD-lower group (n=270) and BMD-higher group (n=209). After PSM analysis, each group consisted of 150 patients. ORR (43.3% vs. 43.5% before PSM, P = 0.964; 44.7% vs. 44.7% after PSM, P = 1.000) and DCR (91.1% vs. 94.3% before PSM, P = 0.195; 93.3% vs. 96.7% after PSM, P =0.190) were similar in two groups. There was no statistically significant relationship between BMD degree and PFS before (16.0 months vs. 18.0 months, P = 0.067) and after PSM analysis (17.0 months vs. 19.0 months, P = 0.095). However, lower BMD was associated with shorter OS both before (20.5 months vs. 23.0 months, P< 0.001) and after PSM analysis (20.0 months vs. 23.0 months, P = 0.008). Conclusion: Lower baseline BMD is associated with worse clinical outcomes in NSCLC patients treated with ICIs. As a reliable and easily obtained individual prognostic biomarker, BMD can become a routine detection indicator before immunotherapy.


Bone Density , Carcinoma, Non-Small-Cell Lung , Immune Checkpoint Inhibitors , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/mortality , Male , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , Female , Middle Aged , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Bone Density/drug effects , Aged , Prognosis , Retrospective Studies , Tomography, X-Ray Computed , Adult
4.
Drug Des Devel Ther ; 18: 1515-1528, 2024.
Article En | MEDLINE | ID: mdl-38716369

Purpose: Estrogen deficiency is the main reason of postmenopausal osteoporosis. Eldecalcitol (ED-71) is a new active vitamin D analogue clinically used in the treatment of postmenopausal osteoporosis. We aimed to investigate whether EphrinB2-EphB4 and RANKL/RANK/OPG signaling cooperate in mediating the process of osteoporosis by ED-71. Methods: In vivo, the ovariectomized (OVX) rats were administered orally with 30 ng/kg ED-71 once a day for 8 weeks. HE staining, Masson staining and Immunofluorescence staining were used to evaluate bone mass, bone formation, osteoclastogenesis associated factors and the expression of EphrinB2, EphB4, RANKL and OPG. In vitro, H2O2 stimulation was used to simulate the cell environment in osteoporosis. Immunofluorescence, quantitative real time PCR (qRT-PCR), enzyme-linked immunosorbent assay (ELISA) and Western Blot were applied to detect the expression of EphrinB2, EphB4, RANKL and OPG. In osteoblasts, EphB4 was knocked down by EphB4 small-interfering RNA (siRNA) transfection. LY294002 (PI3K inhibitor) or ARQ092 (AKT inhibitor) was used to block PI3K/AKT pathway. An indirect co-culture system of osteoblasts and osteoclasts was established. The mRNA and protein expression of osteoclastogenes is associated factors were tested by qRT-PCR and Western Blot. Results: ED-71 increased bone mass and decreased the number of osteoclasts in OVX rats. Moreover, ED-71 promoted the expression of EphrinB2, EphB4, and decreased the RANKL/OPG ratio in osteoblasts. Osteoclastogenesis was restrained when osteoclasts were indirectly co-cultured with ED-71-treated osteoblasts. After silencing of EphB4 expression in osteoblasts, ED-71 inhibited the expression of P-PI3K and P-AKT and increased the ratio of RANKL/OPG. This reversed the inhibitory effect of ED-71 on osteoclastogenes. Therefore, in ED-71-inhibited osteoclastogenes, EphB4 is a key factor affecting the secretion of RANKL and OPG by osteoblasts. EphB4 suppressed the RANKL/OPG ratio through activating PI3K/AKT signaling in osteoblasts. Conclusion: ED-71 inhibits osteoclastogenesis through EphrinB2-EphB4-RANKL/OPG axis, improving bone mass in ovariectomized rats. PI3K/AKT pathway is involved this process.


Ephrin-B2 , Osteoprotegerin , Ovariectomy , RANK Ligand , Rats, Sprague-Dawley , Receptor, EphB4 , Animals , Rats , RANK Ligand/metabolism , RANK Ligand/antagonists & inhibitors , Female , Receptor, EphB4/metabolism , Receptor, EphB4/antagonists & inhibitors , Ephrin-B2/metabolism , Ephrin-B2/antagonists & inhibitors , Osteoprotegerin/metabolism , Vitamin D/pharmacology , Vitamin D/analogs & derivatives , Osteogenesis/drug effects , Cells, Cultured , Osteoclasts/drug effects , Osteoclasts/metabolism , Signal Transduction/drug effects , Bone Density/drug effects
5.
Sci Rep ; 14(1): 10227, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702443

Hydrolyzed egg yolk peptide (YPEP) was shown to increase bone mineral density in ovariectomized rats. However, the underlying mechanism of YPEP on osteoporosis has not been explored. Recent studies have shown that Wnt/ß-catenin signaling pathway and gut microbiota may be involved in the regulation of bone metabolism and the progression of osteoporosis. The present study aimed to explore the preventive effect of the YPEP supplementation on osteoporosis in ovariectomized (OVX) rats and to verify whether YPEP can improve osteoporosis by regulating Wnt/ß-catenin signaling pathway and gut microbiota. The experiment included five groups: sham surgery group (SHAM), ovariectomy group (OVX), 17-ß estradiol group (E2: 25 µg /kg/d 17ß-estradiol), OVX with low-dose YPEP group (LYPEP: 10 mg /kg/d YPEP) and OVX with high-dose YPEP group (HYPEP: 40 mg /kg/d YPEP). In this study, all the bone samples used were femurs. Micro-CT analysis revealed improvements in both bone mineral density (BMD) and microstructure by YPEP treatment. The three-point mechanical bending test indicated an enhancement in the biomechanical properties of the YPEP groups. The serum levels of bone alkaline phosphatase (BALP), bone gla protein (BGP), calcium (Ca), and phosphorus (P) were markedly higher in the YPEP groups than in the OVX group. The LYPEP group had markedly lower levels of alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) and C-terminal telopeptide of type I collagen (CTX-I) than the OVX group. The YPEP groups had significantly higher protein levels of the Wnt3a, ß-catenin, LRP5, RUNX2 and OPG of the Wnt/ß-catenin signaling pathway compared with the OVX group. Compared to the OVX group, the ratio of OPG/RANKL was markedly higher in the LYPEP group. At the genus level, there was a significantly increase in relative abundance of Lachnospiraceae_NK4A136_group and a decrease in Escherichia_Shigella in YPEP groups, compared with the OVX group. However, in the correlation analysis, there was no correlation between these two bacteria and bone metabolism and microstructure indexes. These findings demonstrate that YPEP has the potential to improve osteoporosis, and the mechanism may be associated with its modulating effect on Wnt/ß-catenin signaling pathway.


Bone Density , Osteoporosis , Ovariectomy , Wnt Signaling Pathway , Animals , Ovariectomy/adverse effects , Wnt Signaling Pathway/drug effects , Female , Osteoporosis/prevention & control , Osteoporosis/metabolism , Bone Density/drug effects , Rats , Rats, Sprague-Dawley , Egg Yolk/chemistry , Egg Yolk/metabolism , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Egg Proteins/pharmacology , Egg Proteins/metabolism , Peptides/pharmacology , beta Catenin/metabolism , Alkaline Phosphatase/metabolism , Femur/drug effects , Femur/metabolism , X-Ray Microtomography
6.
Expert Opin Pharmacother ; 25(3): 325-334, 2024 Feb.
Article En | MEDLINE | ID: mdl-38588537

BACKGROUND: Hormone therapy with aromatase inhibitors (AIs) for estrogen receptor-dependent breast cancer may expose patients to an increased osteoporosis risk. This study was performed to estimate fracture risk in women with breast cancer to whom AIs were prescribed in Japan. METHODS: This retrospective study used data from the Japanese Medical Data Vision database. Women with breast cancer prescribed AIs over a 12-month period were identified and matched to women not prescribed AIs using a propensity score. Fracture rates were estimated by a cumulative incidence function and compared using a cause-specific Cox hazard model. The proportion of women undergoing bone density tests was retrieved. RESULTS: For all fractures sites combined, cumulative fracture incidence at 10 years was 0.19 [95%CI: 0.16-0.22] in women prescribed AIs and 0.18 [95%CI: 0.15-0.21] without AIs. AI prescription was not associated with any changes in risk (adjusted hazard ratio: 1.08 [95%CI: 0.99-1.17] p = 0.08). Women prescribed AI more frequently underwent bone density testing (31.9% [95% CI: 31.2%; 32.6%] versus 2.2% [95% CI: 2.0%; 2.4%]). CONCLUSIONS: The anticipated association between AI exposure and osteoporotic fracture risk in Japanese women with breast cancer was not seen clearly.


Aromatase Inhibitors , Bone Density , Breast Neoplasms , Databases, Factual , Osteoporotic Fractures , Humans , Female , Aromatase Inhibitors/adverse effects , Aromatase Inhibitors/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/epidemiology , Japan/epidemiology , Retrospective Studies , Osteoporotic Fractures/epidemiology , Osteoporotic Fractures/prevention & control , Osteoporotic Fractures/chemically induced , Middle Aged , Aged , Bone Density/drug effects , Incidence , Osteoporosis/epidemiology , Osteoporosis/drug therapy , Osteoporosis/chemically induced , Antineoplastic Agents, Hormonal/therapeutic use , Antineoplastic Agents, Hormonal/adverse effects , Aged, 80 and over , Adult
7.
Food Funct ; 15(8): 4490-4502, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38566566

High-fat diet (HFD) has been associated with certain negative bone-related outcomes, such as bone metabolism disruption and bone loss. Sciadonic acid (SC), one of the main nutritional and functional components of Torreya grandis seed oil, is a unique Δ5-unsaturated-polymethylene-interrupted fatty acid (Δ5-UPIFA) that has been claimed to counteract such disorders owing to some of its physiological effects. However, the role of SC in ameliorating bone metabolism disorders due to HFD remains unclear. In the present investigation, we observed that SC modulates the OPG/RANKL/RANK signaling pathway by modifying the lipid metabolic state and decreasing inflammation in mice. In turn, it could balance bone resorption and formation as well as calcium and phosphorus levels, enhance bone strength and bone mineral density (BMD), and improve its microstructure. In addition, SC could inhibit fat vacuoles in bone, reverse the phenomenon of reduced numbers and poor continuity of bone trabeculae, and promote orderly arrangement of collagen fibers and cartilage repair. This study provides some theoretical basis for SC as a dietary intervention agent to enhance bone nutrition.


Bone Density , Diet, High-Fat , Mice, Inbred C57BL , Animals , Diet, High-Fat/adverse effects , Mice , Male , Bone Density/drug effects , Bone and Bones/drug effects , Bone and Bones/metabolism , RANK Ligand/metabolism , Osteoprotegerin/metabolism , Signal Transduction/drug effects
8.
Ecotoxicol Environ Saf ; 276: 116284, 2024 May.
Article En | MEDLINE | ID: mdl-38581912

Fluorosis due to high fluoride levels in drinking water profoundly affects the development of human skeletal and dental structures. Sodium butyrate (NaB) has been found to regulate overall bone mass and prevent pathological bone loss. However, the mechanism of NaB action on fluorosis remains unclear. In this study, a rat model of fluorosis induced by 100 mg/L sodium fluoride was used to investigate the impact of NaB on bone homeostasis and serum metabolomics. It was found that NaB significantly reduced the levels of bone resorption markers CTX-Ⅰ and TRACP-5B in fluorosis rats. Moreover, NaB increased calcium and magnesium levels in bone, while decreasing phosphorus levels. In addition, NaB improved various bone microstructure parameters, including bone mineral density (BMD), trabecular thickness (Tb. Th), trabecular bone separation (Tb. SP), and structural model index (SMI) in the femur. Notably, NaB intervention also enhanced the antioxidant capacity of plasma in fluorosis rats. Furthermore, a comprehensive analysis of serum metabolomics by LC-MS revealed a significant reversal trend of seven biomarkers after the intervention of NaB. Finally, pathway enrichment analysis based on differential metabolites indicated that NaB exerted protective effects on fluorosis by modulating arginine and proline metabolic pathways. These findings suggest that NaB has a beneficial effect on fluorosis and can regulate bone homeostasis by ameliorating metabolic disorders.


Butyric Acid , Fluorosis, Dental , Homeostasis , Animals , Rats , Homeostasis/drug effects , Butyric Acid/pharmacology , Bone and Bones/drug effects , Male , Bone Density/drug effects , Biomarkers/blood , Rats, Sprague-Dawley , Protective Agents/pharmacology , Protective Agents/therapeutic use , Bone Resorption/chemically induced , Sodium Fluoride/toxicity
9.
Biochem Biophys Res Commun ; 711: 149888, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38603833

OBJECTIVE: To investigate the effect of intermittent parathyroid hormone (iPTH) administration on pathological new bone formation during treatment of ankylosing spondylitis-related osteoporosis. METHODS: Animal models with pathological bone formation caused by hypothetical AS pathogenesis received treatment with iPTH. We determined the effects of iPTH on bone loss and the formation of pathological new bone with micro-computed tomography (micro-CT) and histological examination. In addition, the tamoxifen-inducible conditional knockout mice (CAGGCre-ERTM; PTHflox/flox, PTH-/-) was established to delete PTH and investigate the effect of endogenous PTH on pathological new bone formation. RESULTS: iPTH treatment significantly improved trabecular bone mass in the modified collagen-induced arthritis (m-CIA) model and unbalanced mechanical loading models. Meanwhile, iPTH treatment did not enhance pathological new bone formation in all types of animal models. Endogenous PTH deficiency had no effects on pathological new bone formation in unbalanced mechanical loading models. CONCLUSION: Experimental animal models of AS treated with iPTH show improvement in trabecular bone density, but not entheseal pathological bone formation,indicating it may be a potential treatment for inflammatory bone loss does in AS.


Osteogenesis , Parathyroid Hormone , Animals , Parathyroid Hormone/administration & dosage , Parathyroid Hormone/pharmacology , Parathyroid Hormone/therapeutic use , Osteogenesis/drug effects , Mice , Osteoporosis/drug therapy , Osteoporosis/pathology , Mice, Knockout , Male , X-Ray Microtomography , Spondylitis, Ankylosing/drug therapy , Spondylitis, Ankylosing/pathology , Mice, Inbred C57BL , Disease Models, Animal , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Bone Density/drug effects
10.
Acta Cir Bras ; 39: e391024, 2024.
Article En | MEDLINE | ID: mdl-38656061

PURPOSE: Osteoporosis is a bone disease which commonly occurred in postmenopausal women. Almost 10 percent of world population and approximately 30% of women (postmenopausal) suffer from this disease. Alternative medicine has great success in the treatment of osteoporosis disease. Bryodulcosigenin, a potent phytoconstituent, already displayed the anti-inflammatory and antioxidant effect. In this study, we made effort to analyze the antiosteoporosis effect of bryodulcosigenin against ovariectomy (OVX) induced osteoporosis in rats. METHODS: Swiss albino Wistar rats were grouped into fIve groups and given an oral dose of bryodulcosigenin (10, 20 and 30 mg/kg) for eight weeks. Body weight, uterus, bone mineral density, cytokines, hormones parameters, transforming growth factor (TGF)-ß, insulin-like growth factor (IGF), osteoprotegerin (OPG), receptor activator of nuclear factor kappa-Β ligand (RANKL), and its ratio were estimated. RESULTS: Bryodulcosigenin significantly (p < 0.001) suppressed the body weight and enhanced the uterine weight and significantly (p < 0.001) increased the bone mineral density in whole femur, caput femoris, distal femur and proximal femur. Bryodulcosigenin significantly (P < 0.001) altered the level of biochemical parameters at dose dependent manner, significantly (P < 0.001) improved the level of estrogen and suppressed the level of follicle stimulating hormone and luteinizing hormone. Bryodulcosigenin significantly (P < 0.001) improved the level of OPG and suppressed the level of RANKL. CONCLUSIONS: Bryodulcosigenin reduced the cytokines level and suppressed the TGF-ß and IGF. We concluded that bryodulcosigenin is an antiosteoporosis medication based on the findings.


Bone Density , Osteoporosis , Ovariectomy , Rats, Wistar , Animals , Female , Bone Density/drug effects , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Osteoporosis/etiology , Rats , Body Weight/drug effects , Disease Models, Animal , Uterus/drug effects , Cytokines/blood , Cytokines/drug effects , Femur/drug effects , Treatment Outcome
11.
Medicina (Kaunas) ; 60(4)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38674197

Background and Objectives: Androgen deprivation therapy (ADT) for prostate cancer has greatly improved treatment outcomes. As patient survival rates have increased, reports of decreased bone density and increased bone fractures as side effects of ADT have emerged. The prevalence of osteoporosis in Japanese men was 4.6%. The purpose of this study was to evaluate the effect of osteoporosis treatment in prostate cancer patients who underwent ADT in Japan. Materials and Methods: The subjects were 33 male patients who had undergone ADT for prostate cancer, who were noted to have decreased bone density. Mean age was 76.2 ± 7.7 years (64-87). Medications included vitamin D in one case, bisphosphonates (BP) in 27 cases, and denosumab in five cases. The evaluation method examined the rate of change in bone mineral density (BMD) before osteoporosis treatment and 1 year after. For comparison, a group without osteoporosis treatment intervention (n = 33) was selected, and matched for prostate cancer treatment and age. The rate of change in trabecular bone score (TBS) was also calculated. Results: The percentage changes in BMD before and 1 year after treatment were as follows: lumbar spine, 7.1 ± 5.8% in the treatment group versus -3.9 ± 4.1% in the no treatment group; femoral neck, 5.5 ± 6.2% in the treatment group versus -0.9 ± 3.9% in the no treatment group; total femur, 6.6 ± 6.4% in the treatment group versus the no treatment group which was -1.7 ± 3.2%. In all cases, there was a clear significant difference (p < 0.01). The percent change in TBS was further calculated in the same manner. There was no significant difference between the two groups: +1.7 ± 3.8% in the treated group versus +0.3 ± 4.1% in the untreated group. Conclusions: Osteoporosis treatment in Japanese patients with prostate cancer on ADT therapy was found to significantly increase BMD compared to the untreated group. BP and denosumab were found to be very effective in increasing BMD.


Androgen Antagonists , Bone Density Conservation Agents , Bone Density , Denosumab , Osteoporosis , Prostatic Neoplasms , Humans , Male , Osteoporosis/drug therapy , Aged , Japan/epidemiology , Androgen Antagonists/adverse effects , Androgen Antagonists/therapeutic use , Prostatic Neoplasms/drug therapy , Bone Density/drug effects , Aged, 80 and over , Middle Aged , Denosumab/therapeutic use , Denosumab/adverse effects , Bone Density Conservation Agents/therapeutic use , Diphosphonates/therapeutic use , Diphosphonates/adverse effects , Vitamin D/therapeutic use
12.
J Pediatr Endocrinol Metab ; 37(5): 413-418, 2024 May 27.
Article En | MEDLINE | ID: mdl-38624096

OBJECTIVES: Gaucher disease (GD) is a lysosomal storage disease caused by glucocerebrosidase (GCase) enzyme deficiency. Gaucher cells transformed from the macrophages by progressive sphingolipid accumulation and infiltrate bone marrow, spleen, liver, and other organs. The accumulation of substrate causes inflammation, compromised cellular homeostasis, and disturbed autophagy. It has been hypothesized that this proinflammatory state of GD leads cytokines and chemokines release. As a result of inflammatory process, the cellular dysfunction caused by disruption of cellular signaling, organelle dysfunction, or autoimmune antibodies may affect endocrine profile of GD patients such as hormone levels, lipid profile, and bone mineral density status. METHODS: A total of 13 patients confirmed to have GD, 12 non-neuronopathic type and one subacute neuronopathic type, were enrolled in our study. RESULTS: The median treatment duration in the enzyme therapy was 13.33 years (9-26 years). At least one endocrinological abnormality was detected in blood tests of nine patients. Hyperinsulinism was the most common finding although fasting blood glucose levels HgbA1c levels were normal in all patients. Two patients had osteopenia, and osteoporosis was detected in two patients. Low HDL levels were detected in six patients, but HDL levels below 23 mg/dL associated with disease severity have been detected in two patients who have not receiving enzyme replacement therapy. None of patients had thyroidal dysfunction. CONCLUSIONS: This study had revealed endocrinological abnormalities in GD patients that have not led any severe morbidity in our patients. However, thyroid hormone abnormalities, insulin resistance, or lipid profile abnormalities may cause unpredictable comorbidities. Endocrinological assessment in GD patients in routine follow-up may prevent possible clinical manifestation in long term as well as can define efficacy of ERT on endocrine abnormalities.


Enzyme Replacement Therapy , Gaucher Disease , Glucosylceramidase , Humans , Gaucher Disease/drug therapy , Gaucher Disease/blood , Male , Female , Adult , Child , Adolescent , Young Adult , Glucosylceramidase/therapeutic use , Follow-Up Studies , Bone Density/drug effects , Endocrine System Diseases/etiology , Prognosis , Biomarkers/blood , Biomarkers/analysis
13.
Elife ; 132024 Apr 24.
Article En | MEDLINE | ID: mdl-38656229

Background: Among its extragonadal effects, follicle-stimulating hormone (FSH) has an impact on body composition and bone metabolism. Since androgen deprivation therapy (ADT) has a profound impact on circulating FSH concentrations, this hormone could potentially be implicated in the changes of fat body mass (FBM), lean body mass (LBM), and bone fragility induced by ADT. The objective of this study is to correlate FSH serum levels with body composition parameters, bone mineral density (BMD), and bone turnover markers at baseline conditions and after 12 months of ADT. Methods: Twenty-nine consecutive non-metastatic prostate cancer (PC) patients were enrolled from 2017 to 2019 in a phase IV study. All patients underwent administration of the luteinizing hormone-releasing hormone antagonist degarelix. FBM, LBM, and BMD were evaluated by dual-energy x-ray absorptiometry at baseline and after 12 months of ADT. FSH, alkaline phosphatase, and C-terminal telopeptide of type I collagen were assessed at baseline and after 6 and 12 months. For outcome measurements and statistical analysis, t-test or sign test and Pearson or Spearman tests for continuous variables were used when indicated. Results: At baseline conditions, a weak, non-significant, direct relationship was found between FSH serum levels and FBM at arms (r = 0.36) and legs (r = 0.33). Conversely, a stronger correlation was observed between FSH and total FBM (r = 0.52, p = 0.006), fat mass at arms (r = 0.54, p = 0.004), and fat mass at trunk (r = 0.45, p = 0.018) assessed after 12 months. On the other hand, an inverse relationship between serum FSH and appendicular lean mass index/FBM ratio was observed (r = -0.64, p = 0.001). This is an ancillary study of a prospective trial and this is the main limitation. Conclusions: FSH serum levels after ADT could have an impact on body composition, in particular on FBM. Therefore, FSH could be a promising marker to monitor the risk of sarcopenic obesity and to guide the clinicians in the tailored evaluation of body composition in PC patients undergoing ADT. Funding: This research was partially funded by Ferring Pharmaceuticals. The funder had no role in design and conduct of the study, collection, management, analysis, and interpretation of the data and in preparation, review, or approval of the manuscript. Clinical trial number: clinicalTrials.gov NCT03202381, EudraCT Number 2016-004210-10.


Treatments given to cancer patients can cause negative side effects. For example, a treatment known as androgen deprivation therapy ­ which is used to reduce male sex hormone levels in prostate cancer patients ­ can lead to increased body fat percentage and decreased bone density. These adverse effects can have further negative impacts on patient health, such as increasing the risk of cardiovascular disease and fractures from falls from standing height or less, respectively. Understanding how androgen deprivation therapy contributes to these negative side effects may help clinicians better manage care and outcomes for patients with prostate cancer. Follicle stimulating hormone (or FSH for short) has roles in male and female reproduction but has also been linked to changes in body composition. For example, elevated FSH levels are associated with higher total fat body mass in post-menopausal women. While androgen deprivation therapy is known to alter FSH blood levels, the impact of this change in prostate cancer patients was not well understood. To investigate the effect of androgen deprivation therapy on FSH levels and body composition, Bergamini et al. used X-ray technology to measure total fat body mass in prostate cancer patients before and after undergoing 12 months of androgen deprivation therapy. The findings showed that patient FSH blood levels significantly decreased after 12 months of treatment. Higher FSH blood levels strongly correlated with increased total fat body mass after 12 months of treatment. The findings of this clinical trial suggest that FSH blood levels impact the body composition of patients undergoing androgen deprivation therapy. As a result, FSH blood levels may be a suitable biomarker for identifying patients that are more likely to develop obesity and are therefore at greater risk of complications such as cardiovascular disease.


Androgen Antagonists , Body Composition , Bone Density , Follicle Stimulating Hormone , Prostatic Neoplasms , Aged , Aged, 80 and over , Humans , Male , Middle Aged , Absorptiometry, Photon , Androgen Antagonists/therapeutic use , Body Composition/drug effects , Bone Density/drug effects , Follicle Stimulating Hormone/blood , Oligopeptides , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/blood
14.
Nutrients ; 16(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38674843

Calcium and vitamin D deficiencies have been ongoing problems in Koreans due to a lack of food sources of calcium and vitamin D. Postmenopausal women aged 50 to 64 years (n = 25) were randomly assigned to consume three home meal replacements (HMRs)/week with (treatment) and without (control) eggshell powder and vitamin D for 6 months. Additionally, subjects who agreed to continue the study consumed the same three HMRs/week for an additional 6 months in this randomized double-blind study. We confirmed the high compliance of the study participants by analyzing carotenoids, the bioactive substances of HMRs, in the blood. The treatment group consumed an additional 261 mg/d of calcium and 10.3 µg/d of vitamin D from the HMRs, thus meeting the recommended intakes of calcium and vitamin D for Koreans. As a result of consuming fortified HMRs for 6 months, the decline in femoral neck bone density was significantly reduced in the treatment group (p = 0.035). This study indicates that inexpensive eggshell powder may be a good source of calcium for populations with low consumption of milk and dairy products. Additionally, functional HMRs fortified with eggshell powder and vitamin D can be a good dietary strategy for bone health.


Calcium, Dietary , Egg Shell , Food, Fortified , Osteoporosis, Postmenopausal , Postmenopause , Vitamin D , Humans , Female , Double-Blind Method , Middle Aged , Vitamin D/administration & dosage , Vitamin D/blood , Calcium, Dietary/administration & dosage , Osteoporosis, Postmenopausal/prevention & control , Animals , Bone Density/drug effects , Powders , Republic of Korea , Meals
15.
BMC Endocr Disord ; 24(1): 52, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658986

BACKGROUND: Sodium glucose cotransporter 2 (SGLT2) inhibitors are widely used in type 2 diabetes mellitus (T2DM) therapy. The impact of SGLT2 inhibitors on bone metabolism has been widely taken into consideration. But there are controversial results in the study on the effect of SGLT2 inhibitors on bone metabolism in patients with T2DM. Therefore, we aimed to examine whether and to what extent SGLT2 inhibitors affect bone metabolism in patients with T2DM. METHODS: A literature search of randomized controlled trials (RCTs) was conducted through PubMed, Web of Science, Embase, Cochrane databases, and Scopus from inception until 15 April 2023. Eligible RCTs compared the effects of SGLT2 inhibitors versus placebo on bone mineral density and bone metabolism in patients with T2DM. To evaluate the differences between groups, a meta-analysis was conducted using the random effects inverse-variance model by utilizing standardized mean differences (SMD). RESULTS: Through screening, 25 articles were finally included, covering 22,828 patients. The results showed that, compared with placebo, SGLT2 inhibitors significantly increased parathyroid hormone (PTH, SMD = 0.13; 95%CI: 0.06, 0.20), and cross-linked C-terminal telopeptides of type I collagen (CTX, SMD = 0.11; 95%CI: 0.01, 0.21) in patients with T2DM, decreased serum alkaline phosphatase levels (ALP, SMD = -0.06; 95%CI: -0.10, -0.03), and had no significant effect on bone mineral density (BMD), procollagen type 1 N-terminal propeptide (P1NP), 25-hydroxy vitamin D, tartrate resistant acid phosphatase-5b (TRACP-5b) and osteocalcin. CONCLUSIONS: SGLT2 inhibitors may negatively affect bone metabolism by increasing serum PTH, CTX, and decreasing serum ALP. This conclusion needs to be verified by more studies due to the limited number and quality of included studies. SYSTEMATIC REVIEW REGISTRATION: PROSPERO, identifier CRD42023410701.


Bone Density , Bone and Bones , Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Bone Density/drug effects , Bone and Bones/metabolism , Bone and Bones/drug effects , Randomized Controlled Trials as Topic
16.
PLoS One ; 19(4): e0302566, 2024.
Article En | MEDLINE | ID: mdl-38669283

INTRODUCTION: Solid organ transplant (SOT) recipients can experience bone loss caused by underlying conditions and the use of immunosuppressants. As a result, SOT recipients are at risk for decreased bone mineral density (BMD) and increased fracture incidences. We propose a network meta-analysis (NMA) that incorporates all available randomized control trial (RCT) data to provide the most comprehensive ranking of anti-osteoporotic interventions according to their ability to decrease fracture incidences and increase BMD in SOT recipients. METHODS: We will search MEDLINE, EMBASE, Web of Science, CINAHL, CENTRAL and CNKI for relevant RCTs that enrolled adult SOT recipients, assessed anti-osteoporotic therapies, and reported relevant outcomes. Title and full-text screening as well as data extraction will be performed in-duplicate. We will report changes in BMD as weighted or standardized mean differences, and fracture incidences as risk ratios. SUCRA scores will be used to provide rankings of interventions, and quality of evidence will be examined using RoB2 and CINeMA. DISCUSSIONS: To our knowledge, this systematic review and NMA will be the most comprehensive quantitative analysis regarding the management of bone loss and fractures in SOT recipients. Our analysis should be able to provide physicians and patients with an up-to-date recommendation for pharmacotherapies in reducing incidences of bone loss and fractures associated with SOT. The findings of the NMA will be disseminated in a peer-reviewed journal.


Bone Density , Fractures, Bone , Network Meta-Analysis , Organ Transplantation , Osteoporosis , Systematic Reviews as Topic , Humans , Bone Density/drug effects , Bone Density Conservation Agents/therapeutic use , Fractures, Bone/prevention & control , Fractures, Bone/etiology , Organ Transplantation/adverse effects , Osteoporosis/prevention & control , Osteoporosis/etiology , Randomized Controlled Trials as Topic , Systematic Reviews as Topic/methods
17.
BMC Endocr Disord ; 24(1): 55, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38679740

BACKGROUND: Glucocorticoids and sclerostin act as inhibitors of the Wnt signaling pathway, thereby hindering bone formation. Given the pathway's intricate association with mesenchymal stem cells, the hypothesis suggests that heightened sclerostin levels may be intricately linked to an augmentation in marrow adiposity induced by glucocorticoids. This study endeavored to delve into the nuanced relationship between circulating sclerostin and bone marrow adipose tissue in postmenopausal women grappling with glucocorticoid-induced osteoporosis (GIO). METHODS: In this cross-sectional study, 103 patients with autoimmune-associated diseases underwent glucocorticoid treatment, boasting an average age of 61.3 years (standard deviation 7.1 years). The investigation encompassed a thorough assessment, incorporating medical history, anthropometric data, biochemical analysis, and dual-energy X-ray absorptiometry measurements of lumbar and femoral bone mineral density (BMD). Osteoporosis criteria were established at a T-score of -2.5 or lower. Additionally, MR spectroscopy quantified the vertebral marrow fat fraction. RESULTS: BMD at the femoral neck, total hip, and lumbar spine showcased an inverse correlation with marrow fat fraction (r = -0.511 to - 0.647, P < 0.001). Serum sclerostin levels exhibited a positive correlation with BMD at various skeletal sites (r = 0.476 to 0.589, P < 0.001). A noteworthy correlation emerged between circulating sclerostin and marrow fat fraction at the lumbar spine (r = -0.731, 95% CI, -0.810 to -0.627, P < 0.001). Multivariate analysis brought to light that vertebral marrow fat fraction significantly contributed to sclerostin serum concentrations (standardized regression coefficient ß = 0.462, P < 0.001). Even after adjusting for age, body mass index, physical activity, renal function, BMD, and the duration and doses of glucocorticoid treatment, serum sclerostin levels maintained a significant correlation with marrow fat fraction. CONCLUSIONS: Circulating sclerostin levels exhibited a noteworthy association with marrow adiposity in postmenopausal women grappling with GIO.


Adaptor Proteins, Signal Transducing , Adiposity , Bone Density , Bone Marrow , Glucocorticoids , Postmenopause , Humans , Female , Middle Aged , Glucocorticoids/adverse effects , Cross-Sectional Studies , Adiposity/drug effects , Bone Density/drug effects , Bone Marrow/drug effects , Bone Marrow/metabolism , Aged , Genetic Markers , Biomarkers/blood , Biomarkers/analysis , Osteoporosis, Postmenopausal/blood , Absorptiometry, Photon
18.
J Dev Orig Health Dis ; 15: e6, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38653729

We previously showed in rats that pre- and postnatal deficiencies in iron and omega-3 (n-3) fatty acids can impair bone development, with additive and potentially irreversible effects when combined. This study aimed to investigate, in female rats consuming a combined iron and n-3 fatty acid deficient (ID + n-3 FAD) diet preconception, whether supplementation with iron and docosahexaenoic/eicosapentaenoic acid (DHA/EPA), alone and in combination, can prevent bone impairments in offspring. Using a 2 × 2 factorial design, female Wistar rats consuming an ID + n-3 FAD diet preconception were randomised to receive an: 1) iron supplemented (Fe + n-3 FAD), 2) DHA/EPA supplemented (ID + DHA/EPA), 3) Fe + DHA/EPA, or 4) ID + n-3 FAD diet from gestational day 10 throughout pregnancy and lactation. Post-weaning, offspring (n = 24/group; male:female = 1:1) remained on the respective experimental diets for three weeks until postnatal day 42-45. Offspring born to female rats consuming a control diet preconception and an Fe+DHA/EPA diet throughout pregnancy and lactation served as non-deficient reference group (Control+Fe+DHA/EPA). Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry and bone strength using three-point bending tests. Only offspring in the Fe+DHA/EPA group had significantly higher spine and femur BMD, and higher femur stiffness than offspring in the ID + n-3 FAD group, and had similar spine BMD and femur stiffness as the Control + Fe + DHA/EPA group. Offspring in the Fe + DHA/EPA group further had significantly higher femur strength (ultimate load) than the other experimental groups, and a similar femur strength as the Control + Fe + DHA/EPA group. This study shows that only combined iron and DHA/EPA supplementation can prevent bone impairments in offspring of female rats consuming an iron and n-3 FA deficient diet preconception.


Dietary Supplements , Fatty Acids, Omega-3 , Rats, Wistar , Animals , Female , Fatty Acids, Omega-3/administration & dosage , Rats , Pregnancy , Male , Iron/metabolism , Iron/administration & dosage , Bone Density/drug effects , Prenatal Exposure Delayed Effects/prevention & control
19.
Nutrients ; 16(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38674841

Osteoporosis affects one in three women over the age of 50 and results in fragility fractures. Oestrogen deficiency during and after menopause exacerbates bone loss, accounting for higher prevalence of fragility fractures in women. The gut microbiota (GM) has been proposed as a key regulator of bone health, as it performs vital functions such as immune regulation and biosynthesis of vitamins. Therefore, GM modulation via probiotic supplementation has been proposed as a target for potential therapeutic intervention to reduce bone loss. While promising results have been observed in mouse model studies, translation into human trials is limited. Here, we present the study protocol for a double-blind randomized controlled trial that aims to examine the effectiveness of three lactobacilli strains on volumetric bone mineral density (vBMD), trabecular, and cortical microstructure, as measured using High Resolution peripheral Quantitative Computed Tomography (HR-pQCT). The trial will randomize 124 healthy early postmenopausal women (up to 8 years from menopause) to receive either probiotic or placebo administered once daily for 12 months. Secondary outcomes will investigate the probiotics' effects on areal BMD and specific mechanistic biomarkers, including bone metabolism and inflammatory markers. The trial is registered with Australian New Zealand Clinical Trials Registry (ACTRN12621000810819).


Bone Density , Dietary Supplements , Lactobacillus , Postmenopause , Probiotics , Humans , Probiotics/administration & dosage , Female , Bone Density/drug effects , Double-Blind Method , Australia , Middle Aged , Osteoporosis, Postmenopausal/prevention & control , Gastrointestinal Microbiome , Bone and Bones/metabolism , Randomized Controlled Trials as Topic
20.
Nutrients ; 16(8)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38674910

Type 2 diabetes mellitus (T2DM) presents a challenge for individuals today, affecting their health and life quality. Besides its known complications, T2DM has been found to contribute to bone/mineral abnormalities, thereby increasing the vulnerability to bone fragility/fractures. However, there is still a need for appropriate diagnostic approaches and targeted medications to address T2DM-associated bone diseases. This study aims to investigate the relationship between changes in gut microbiota, T2DM, and osteoporosis. To explore this, a T2DM rat model was induced by combining a high-fat diet and low-dose streptozotocin treatment. Our findings reveal that T2DM rats have lower bone mass and reduced levels of bone turnover markers compared to control rats. We also observe significant alterations in gut microbiota in T2DM rats, characterized by a higher relative abundance of Firmicutes (F) and Proteobacteria (P), but a lower relative abundance of Bacteroidetes (B) at the phylum level. Further analysis indicates a correlation between the F/B ratio and bone turnover levels, as well as between the B/P ratio and HbA1c levels. Additionally, at the genus level, we observe an inverse correlation in the relative abundance of Lachnospiraceae. These findings show promise for the development of new strategies to diagnose and treat T2DM-associated bone diseases.


Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diet, High-Fat , Dysbiosis , Gastrointestinal Microbiome , Osteoporosis , Streptozocin , Animals , Gastrointestinal Microbiome/drug effects , Diet, High-Fat/adverse effects , Osteoporosis/etiology , Diabetes Mellitus, Experimental/microbiology , Rats , Male , Diabetes Mellitus, Type 2/microbiology , Rats, Sprague-Dawley , Bone Density/drug effects , Bone Remodeling/drug effects , Bone and Bones/drug effects , Bone and Bones/metabolism
...